Supermodular functions and the complexity of MAX CSP

نویسندگان

  • David A. Cohen
  • Martin C. Cooper
  • Peter Jeavons
  • Andrei A. Krokhin
چکیده

In this paper we study the complexity of the maximum constraint satisfaction problem (Max CSP) over an arbitrary finite domain. An instance of Max CSP consists of a set of variables and a collection of constraints which are applied to certain specified subsets of these variables; the goal is to find values for the variables which maximize the number of simultaneously satisfied constraints. Using the theory of suband supermodular functions on finite lattice-ordered sets, we obtain the first examples of general families of efficiently solvable cases of Max CSP for arbitrary finite domains. In addition, we provide the first dichotomy result for a special class of non-Boolean Max CSP, by considering binary constraints given by supermodular functions on a totally ordered set. Finally, we show that the equality constraint over a non-Boolean domain is non-supermodular, and, when combined with some simple unary constraints, gives rise to cases of Max CSP which are hard even to approximate.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identifying Efficiently Solvable Cases of Max CSP

In this paper we study the complexity of the maximum constraint satisfaction problem (Max CSP) over an arbitrary finite domain. We describe a novel connection between this problem and the supermodular function maximization problem (which is dual to the submodular function minimization problem). Using this connection, we are able to identify large classes of efficiently solvable subproblems of M...

متن کامل

Maximum Constraint Satisfaction on Diamonds

In this paper we study the complexity of the (weighted) maximum constraint satisfaction problem (Max CSP) over an arbitrary finite domain. In this problem, one is given a collection of weighted constraints on overlapping sets of variables, and the goal is to find an assignment of values to the variables so as to maximize the total weight of satisfied constraints. Max Cut is a typical example of...

متن کامل

The complexity of approximating conservative counting CSPs

We study the complexity of approximation for a weighted counting constraint satisfaction problem #CSP(F). In the conservative case, where F contains all unary functions, a classification is known for the Boolean domain. We give a classification for problems with general finite domain. We define weak log-modularity and weak log-supermodularity, and show that #CSP(F) is in FP if F is weakly log-m...

متن کامل

The Approximability of Three-valued MAX CSP

In the maximum constraint satisfaction problem (Max CSP), one is given a finite collection of (possibly weighted) constraints on overlapping sets of variables, and the goal is to assign values from a given domain to the variables so as to maximize the number (or the total weight, for the weighted case) of satisfied constraints. This problem is NP-hard in general, and, therefore, it is natural t...

متن کامل

Log-supermodular functions, functional clones and counting CSPs

Motivated by a desire to understand the computational complexity of counting constraint satisfaction problems (counting CSPs), particularly the complexity of approximation, we study functional clones of functions on the Boolean domain, which are analogous to the familiar relational clones constituting Post’s lattice. One of these clones is the collection of log-supermodular (lsm) functions, whi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discrete Applied Mathematics

دوره 149  شماره 

صفحات  -

تاریخ انتشار 2005